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Abstract. The aim of the work is to develop multi-scale finite element (FE) models of 

unidirectional fibre composite materials. This enables to create the models of reasonable 

dimensionality, which are able to present adequately the mechanical behaviour of the highly 

complex internal micro-structure of the material. As a sample structure, the sheet of epoxy 

reinforced with fibres is considered. The homogenized material properties of the shell FE at the 

macro-scale are obtained by performing a proper sequence of numerical experiments on the 

refined finite element structure of the representative volume of the composite. The representative 

volume is a micro-cube, the FE model of which presents physical and geometrical properties at the 

micro-scale periodically recurring within the overall volume of the composite. The behaviour of 

the micro-cube is simulated including large deformation and failure. Linear material properties are 

obtained by using pure strains assumptions in the implicit analysis of the micro-cube, while the 

non-linear behaviour and failure parameters require the explicit dynamic analysis. Simulation is 

performed by using LS-DYNA finite element software.  
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1. Introduction  

Composites are materials with complex internal structure composed of two or more 

materials of significantly different mechanical properties. Typical unidirectional (UD) 

composites consist of the epoxy matrix reinforced with fibres. The stiffness of the fibre 

material is much higher than the stiffness of the matrix (Vasiliev and Morozov, 2001). 

As composite materials are artificial, the desirable overall mechanical properties can be 

achieved by varying the properties and geometry of composing materials (Milton, 2002). 

Due to favourable strength against mass ratio the unidirectional composites are widely 

used to manufacture products for sports, aircraft, medical use, etc.  

Simulation of the mechanical behaviour of the unidirectional fibre composite by 

taking into account its microstructure requires unrealistically large computational 

resources. The multi-scale approach to the modelling enables to present the model of the 

composite by reduced models of much lesser dimensionality, which simultaneously 

retain all main features of mechanical behaviour of the micro-structure of the composite. 

Numerous approaches have been developed in order to establish the physically adequate 

relationships between the models of an object presented at micro- and macro- scales. 
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Homogenization methods (Xing et al., 2010; Pinho-da-Cruz, 2009), analytical 

approach (Kanit et al., 2003; Vasiliev and Morozov, 2001; May et al., 2014), numerical 

simulations performed on the samples of the microstructure (Berger et al., 2005) were 

employed in order to evaluate the effective elastic properties of the composite material. 

For the random media, the sample of the microstructure must include all microstructural 

heterogeneities that occur in the composite (Kanit et al., 2003). In case of the ideal 

periodic structure a unit cell is able to capture the major features of the underlying 

microstructure (Berger et al., 2005) and the increase of the number of fibres in the model 

would not affect the results of the mechanical behaviour (Thibaux et al., 2000). Other 

conditions applied to define the size of the representative structure (RS) are discussed in 

Pelissou et al. (2009).  

The stiffness and strength of the UD composite along the fibres are governed mostly 

by the fibres and are not perceptibly influenced by the cracks in the matrix. Under 

longitudinal tension the structure fails if the fibres fail. It follows that the strength of the 

fibres under tensile load can be employed to identify failure in the longitudinal direction 

using the maximum stress criterion (Ribeiro et al., 2012). Vasiliev and Morozov (2001) 

define longitudinal tensile strength as the stress at the ultimate elongation of the fibre for 

the material with the stiffness evaluated using the rules of mixture.  

The stiffness and strength of the UD composite in the transverse and shear directions 

are influenced by both matrix and fibre materials. Usually the damage in the composite 

under the transverse tensile or shear load occurs in the matrix and in the fibre-matrix 

interface (Maimi et al., 2007). The 1st order model (FOM) of the UD composite contains 

one layer of fibres of circular cross-section aligned in parallel. For the FOM, the 

transverse strength is equal to the ultimate stress of the matrix material and the shear 

strength exceeds the transverse strength (Vasiliev and Morozov, 2001). However, shear 

strength is not evaluated analytically. 

In this work the FOM is proposed to evaluate the effective elastic parameters 

analytically and using FEM simulation. Two approaches were applied to evaluate shear 

parameters of the material. The shear parameters evaluated using traditional approach 

with pure shear simulation depends on the size of the analysed structure. The new 

approach to evaluate shear parameters using shear simulation without the straight side 

requirement is presented in this article. Furthermore, numerical examples are presented 

in this article to compare the stresses of the heterogeneous and homogenized material 

models. 

2. The first order model of the UD composite 

The representative structure (RS) of the 1st order model (FOM) of the UD composite 

(Fig.1, B) consisting of the shell elements is used to evaluate the effective parameters of 

the composite material. The 4-node shell element (6 degrees of freedom per node) is 

employed for the simulation of the UD composite at the macro-scale with the 

assumption that the material is homogeneous (Fig.1, C). The periodic element of the 

FOM (Fig.1, B) consisting 81 nodes (6 degrees of freedom per node) derives from the 

solid model (Fig.1, A) which is composed of 735 nodes (3 degrees of freedom per node). 

As a result, degrees of freedom of the periodic element are reduced from 2205 for the 

solid model to 486 for the FOM and 24 for the homogeneous shell model. 
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The micro-structure of the unidirectional composite is defined by the fibre fraction �� 
and the direction of the fibres only. Hence the composing material can be presented as a 

system of the areas simulating fibres and matrix with the respective fraction in the 

structure (Vasiliev and Morozov, 2001): 

 �� =
��

�
, �� =

��

�
, � = �� + ��  ( 1 ) ��, �� are the dimensions of the fibre and matrix on the side of the periodic element 

(Fig.1, B), ��, �� – fraction of the fibre and matrix in the model.  

 

Fig.1. Scheme for data reduction employed to simulate the mechanical behaviour of the UD 

composite: solid model (A), the 1st order shell model (B), the homogeneous shell model (C). 

10x10 structures of the models are shown on the left, the periodic elements are shown on the right. 

2.1. Analytical evaluation of the effective parameters 

The effective parameters of FOM are evaluated analytically using the following 

equations (Vasiliev and Morozov, 2001):  
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where �{} – Young’s modulus,�{} – Poisson’s ration, �{} –shear modulus. Subscripts �,� indicate the parameters of the fibre or matrix material, and subscripts �, 	, �	 refer 
to the direction of the effective parameter of the homogeneous material.  

If the fibre material is linear until the failure and 
�̅ is the ultimate elongation of the 
fibre (usually less than the ultimate elongation of the matrix material 
�̅), the 
longitudinal tensile strength � is determined as (Vasiliev and Morozov, 2001): 
 � = (���� + ����)
�̅ ( 6 ) 

If the stiffness reduction after yielding is considered, the longitudinal tensile strength 

is calculated as follows:  

 � = �� ���
� + ���
�̅ − 
���+ �� ���
� + ���
�̅ − 
��� ( 7 ) 
  
� ≤ 
�̅, 
� ≤ 
�̅, 
�̅ ≤ 
�̅  ��,� – tangent modulus of the fibre or matrix material, 
�,� – the strain at the yield 
point of the respective material and product �
 is equal to the yield stress. 
For the FOM the transverse tensile strength � is determined as the ultimate stress of 

the matrix material ��� (Vasiliev and Morozov, 2001): 
 � = ���  ( 8 ) 

The shear stress-strain relation is non-linear and the ultimate shear strength �� 
exceeds the ultimate transverse tensile strength � for the UD composite. In addition, 
the tensile strength in the transverse direction and shear strength depend on the strain 

rate and the longitudinal strength is independent of the strain rate (Taniguchi et al., 

2012).  

2.2. FEM approach for the identifying the effective parameters 

FEM simulation of the representative structure (RS) is applied in order to obtain the 

homogenized elastic constants. The RS of FOM (Fig.1, B) is subjected to deformations 

by applying the load schemes presented in Fig.2: uniaxial (Fig.2 A, B) and pure shear 

(Fig.2 C).  The sides of the RS remain straight in the deformed configuration.  

The implicit FE analysis is employed to evaluate the linear elastic constants. The loading 

is performed by prescribing small displacements of the nodes on the edges of the RS in 

accordance with the schemes in Fig.2. Implicit simulation is performed by using LS-

DYNA FE software. The mean stresses of the RS are calculated as follows:  

 � = ����������� = ∑ ��

� ��
����{�}���{�}���{�}��
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!� – area of the i-th element, ! – area of the RS, ���{�} – stress of the i-th element in the 
longitudinal direction, ���{�} – stress of the i-th element in the transverse direction, ���{�} – 
shear stress of the i-th element.  

 

   
 A B C 

 

Fig.2. Load schemes for the RS: A – longitudinal tension mode; B – transverse tension mode;  

C – shear mode. Empty triangles define constraints (symbols ▷◁ mean that the node is constrained 

in x direction and symbols △▽ mean that the node is constrained in y direction). Dotted lines 

present the deformed configuration. 

 

The elastic compliance matrix S can be calculated by using the inverse Hooke’s law:  
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The superscripts A, B, C define the load schemes as presented in Fig.2 which were 

employed in order to calculate the stresses and strains. The compliance matrix of the 

orthotropic material in the plane stress condition is related to the parameters of the linear 

elasticity as follows:  
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Due to the symmetry of the compliance matrix 4 parameters ��, ��, ���, ��� are 
enough to define the elastic behaviour of the orthotropic material. 

Explicit FE analysis is employed to obtain the failure limit of the material. The 

prescribed displacements as in Fig.2 applied on the edges of RS are increased with 
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constant velocity till the failure of the fibres or of the matrix material takes place. The 

prescribed displacement #� at time moment $ is: 
 #�  = $ ∙ Δ#, #�  = 0  ( 12 ) 

Δ# is a displacement increment per time unit.  
The stresses �[�] of the representative structure (RS) at the time moment $ are 

calculated using the equation ( 9 ). To define the nonlinear stress and strain relation for 

the *MAT_LAMINATED_COMPOSITE_FABRIC (*MAT_058) material model in the 

finite element software LS-DYNA, longitudinal and transverse tensile strengths �, � 
and shear strength �� with the respective failure strains 
��, 
�and "�� are required.  
The longitudinal tensile strength � is the maximum stress ���[�] of the RS loaded by 

the scheme A (Fig.2) before the failure ( 13 ). Similarly, the transverse tensile strength � is the maximum stress ���[�] ( 14 ) of the RS loaded by the scheme B (Fig.2) and the 
shear strength �� is the maximum shear stress ���[�] ( 15 ) of the RS loaded by the scheme 
C (Fig.2) if the RS is loaded till the failure occurs.  

 � = max
�

(���[�]); 
�� = 
��[�], %:���[�] = �   ( 13 ) 

 � = max
�

(���[�]); 
� = 
��[�], %:���[�] = �  ( 14 ) 

 �� = max
�

(���[�]); "�� = "��[�], %: ���[�] = ��  ( 15 ) 

���[�], ���[�], ���[�]  – the mean stresses of the RS at the i-th time moment, 
��[�], 
��[�] , "��[�]− 
the strains of the RS at the i-th time moment.  

3. Numerical examples 

3.1. Component materials 

The matrix and fibre materials are assumed to be isotropic in the simulation of the 

mechanical behaviour of the UD composite defined by the heterogeneous FOM. The 

material model *MAT_PLASTIC_KINEMATIC (*MAT_003) is used in LS-DYNA for 

the matrix and fibre material simulation with parameters in Table 1. The fibres are 

oriented in the x direction.  

Table 1. Parameters of the fibre and matrix materials. 

 Fibre Matrix 

Mass density, kg/m3 2.70E3 1.30E3 

Young‘s modulus, N/m2 7.50E10 3.10E9 

Poisson‘s ratio 0.334 0.400 

Yield stress, N/m2 5.00E8 7.17E7 

Tangent modulus, N/m2 1.50E9 3.82E8 

Failure strain 0.04 0.07 

Shear modulus, N/m2 2.81E10 1.11E9 
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3.2. Effective parameters 

The FEM simulation scheme defined in Section 2.2 is employed for the square structure 

with different number of the fibres to evaluate the effective properties of the material. 

The structure is assembled of the FOM periodic elements (Fig.1, B). The structure is 

called representative (RS) if more fibres in the structure do not affect the effective 

parameters. The Young’s modulus in the fibre �� and transverse �� directions and 
Poisson’s ratio ��� are not affected by the number of the fibres in the analysed structure 
unlike the shear modulus ��� if sides of the structure remain straight in the deformed 
shear configuration (see Table 2). This requirement has a significant effect for the 

stresses of the elements near the boundaries. As the shear modulus is evaluated by using 

the mean stress, the impact of boundary constraints is reduced by increasing the number 

of the fibres in the structure (see Table 2). If the number of the fibres increases, the 

waviness of the fibres occurs inside the analysed structure and the mean stress converges 

to the mean stress of the structure without constraints for the fibres. In order to accelerate 

convergence the mean stress of the periodic element at its centre can be used as the mean 

stress of the analysed structure. Similar results were obtained for the model if there is no 

requirement that sides of the element remain straight in the deformed configuration 

(Fig.3). 

 

 
Fig.3. Shear load scheme and periodic element in the deformed configuration. 

Table 2. Effective parameters of the structure assembled of different number of periodic elements. 

Number of the 

periodic 

elements in the 

RS 

���(A) ��� 
(centre) 

���(B) �� �� ��� 

1 (1x1) 1.33E10 1.33E10 3.98E9 5.70E10 1.27E10 0.078 

9 (3x3) 6.64E9 5.17E9 3.98E9 5.70E10 1.27E10 0.078 

25 (5x5) 5.41E9 4.17E9 3.98E9 5.70E10 1.27E10 0.078 

81 (9x9) 4.70E9 3.96E9 3.98E9 5.70E10 1.27E10 0.078 

225 (15x15) 4.39E9 3.97E9 3.98E9 5.70E10 1.27E10 0.078 

441 (21x21) 4.23E9 3.98E9 3.98E9 5.70E10 1.27E10 0.078 

���(A) – the mean stress of the RS under shear load (Fig.2, C), ���(centre) – the mean stress of 

the periodic element in the centre of the RS under shear load (Fig.2, C), ���(B) – the mean stress 

of the RS under shear load without straight side requirement (Fig.3) is used in evaluation.  
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Three sets of the homogeneous material parameters are considered in the numerical 

examples with the parameters in Table 3 for the material model 

*MAT_LAMINATED_COMPOSITE_FABRIC (*MAT_058) in LS-DYNA. Shear 

strength and corresponding strain are not evaluated analytically, but these values are 

required in the numerical model of the material. The fictitious shear strength and strain 

at shear strength values (Table 3, ◊) are used for the stability of the homogeneous 

material model C. Two material models with parameters evaluated using the FEM 

approach are considered. Only the evaluation of the shear properties differ in both 

models. For the material model A, the shear modulus, shear strength and the strain at 

shear strength are evaluated using the pure shear assumption in simulation of the 

behaviour of the RS consisting 441 periodic elements. For the shear parameters of the 

material model B, there is no requirement that lines remain straight in the deformed 

shear configuration and shear modulus, shear strength and the respective strain are 

 

 

   
 A B 

   
 C D  

Fig. 4. True stress – true strain curves: (A) longitudinal tensile load; (B) – transverse tensile load; 

(C) – shear load (different size of the analysed structure, sides remain straight in the deformed 

configuration); (D) – shear load (no straight side requirement). 

evaluated for the RS consisting one periodic element. The rule of mixture is employed to 

evaluate the mass density ρ of the homogeneous material: 
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 ρ = ρ��� + ρ���  ( 16 ) 

ρ�, ρ� – mass density of the fibre and matrix material respectively.  

 

Shear modules ���, ��� are not evaluated for the FOM of the UD composite, but 
non-zero values are required to avoid numerical instabilities in the FEM analysis. 

Nilakantan et al. (2011) assume all three shear modulus are equal and the value is two 

orders of magnitude lower than the longitudinal modulus in simulation of the woven 

flexible fibres. In this research the evaluated shear modulus ��� is applied and the ���, ��� are three orders of magnitude lower than the evaluated shear modulus.  
The longitudinal and transverse tensile strength with respective strains are evaluated 

for the structure of one periodic element. For the longitudinal tensile load (Fig. 4, A), 

both fibre and matrix materials reach yield points. The analysed structure fails 

completely after the fibres fail as most elements are deleted in the FEM model. For the 

transverse tensile load (Fig. 4, B), only the matrix material exhibits plastic behaviour. 

Moreover, the material is not weakened in the longitudinal direction – only elements 

representing the matrix material are deleted in the FEM model.  

The simulated shear stress – strain curves depend on the size of the analysed 

structure (Fig. 4, C) if the sides remain straight in the deformed configuration. The shear 

strength used in the homogeneous material model A is the shear strength of the largest 

analysed structure (21x21) under the pure shear load. For the material model B the shear 

strength and the corresponding strain values are evaluated from the shear stress – strain 

curve (Fig. 4, D) for one periodic element using the load scheme in Fig.3 (no 

requirement that the sides remain straight in the deformed configuration).  

For the homogeneous material models if longitudinal or transverse strength is 

reached the stresses are reduced to the stress equal to 1% of the maximum stress. The 

shell element is deleted if its effective strain is 100%. 

 

Table 3. Parameters of the homogeneous material models. 

 FEM approach Analytical approach 

 (A) (B) (C) 

Mass density, kg/m3 2.35E3 2.35E3 

Young’s modulus, ��, N/m2 5.70E10 5.70E10 

Young’s modulus, ��, N/m2 1.27E10 1.27E10 

Poisson’s ratio, ��� 0.078 0.078 

Shear modulus, ���, N/m2 4.09E9 3.98E9 3.97E9 

Strain at longitudinal strength, 
�� 0.047 0.040 

Strain at transverse strength, 
� 0.025 0.018 

Strain at shear strength, "�� 0.032 0.040 1◊ 

Longitudinal strength, �, N/m2 4.76E8 4.32E8 

Transverse strength, �, N/m2 1.17E8 8.90E7 

Shear strength, ��, N/m2 5.78E7 5.64E7 3.97E9◊ 

The linear elastic parameters of the analytical model and material model B differ 

insignificantly. The longitudinal and transverse tensile strength values estimated 
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numerically are higher than the values computed analytically. Moreover, shear strengths 

for the material models A and B differ less than 10%. Although the shear strength values 

are close for both models but the shear strength for the material model A is reached at 

lower strain. This affects differences in the shear stress – strain curves of the models.  

3.3. Biaxial tensile test for the 10x10 structure 

The biaxial tensile load (Fig. 5) with augmentative displacements of the same magnitude 

in both directions is performed for the structure of 10x10 periodic elements using 

explicit FEM analysis. The 1st order model of the UD composite is analysed as the basis 

model. The mean stresses are compared for the structures with material models in Table 

3. 

 
Fig. 5. Load scheme and the structure after the matrix failure. 

 
 A B C 

Fig. 6. Mean stresses of the structure (Fig. 5). 
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For the FOM (MAT003), the elastic to plastic transition of the matrix material causes 

the stress – strain relationship to change the slope and the stress in the transverse 

direction decreases to zero after the matrix material fails (Fig. 6, B). This causes the 

reduction of the mean stress in the longitudinal direction (Fig. 6, A). After the matrix 

failure, the fibres govern the behaviour of the composite until the fibre failure. As no 

shear strain occurs under this type of loading (Fig. 6, C), the behaviour of the 

homogeneous material models A and B differ insignificantly until the strength is reached 

in both directions. Significant shear stresses appear after the element failure in 

longitudinal and transverse directions and differ for the material models A and B due to 

the differences in shear parameters. Both models A and B overestimate the strength of 

the UD composite in the transverse and longitudinal directions. To the contrary, the 

homogeneous material model C underestimates the strength in the transverse and 

longitudinal directions.  

3.4. Shear test for the 10x10 structure 

The shear load (Fig. 7) with augmentative displacements is performed for the structure 

of 10x10 periodic elements with explicit FEM analysis. The FOM of the UD composite 

is analysed as the basis model. The mean stresses are compared for the structures with 

material models in Table 3. 

 
Fig. 7. Load scheme and the structure after failure. 

 

Similarly to the previous example there are only two types of strain under this load 

(Fig. 8, B). The elastic to plastic transition of the matrix material causes the change of 

the slope in the shear stress – strain curve and shear stress reduction after the matrix 

failure (Fig. 8, C). The fictitious shear strength values were used for the material model 

C and the shear stress – strain relationship is linear until the failure. This model shows a 

good agreement with the basis model while the both matrix and fibre materials are 

elastic. The material model B underestimates the shear strength and strain. The material 

model A fails at higher strain than the basis model. As the shear behaviour is analysed, 

the stress – strain curve of the basis model depends on the number of the periodic 

elements and the constraints on the sides of the structure.  
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 A B C 

Fig. 8. Mean stresses of the structure (Fig. 7). 

4. Final remarks 

In this article, the effective elastic and failure parameters were evaluated analytically and 

using FEM simulations.  

Using the homogeneous material model the 486 degrees of freedom were reduced to 

24 degrees of freedom for the representative element. If the effective parameters are 

evaluated without the requirement that sides of the representative element remain 

straight, the linear elastic parameters differ insignificantly compared to the parameters 

evaluated analytically.  

In the numerical examples the behaviour of the structures with different material 

parameters were compared. The parameters were evaluated analytically and numerically 

with the different boundary requirement for the shear test. It is enough to analyse 

longitudinal and transverse tensile tests for one periodic element to evaluate the effective 

Poisson’s ratio and Young’s modulus in the longitudinal and transverse directions. The 

shear properties of the FOM depend on the number of the fibres in the model if the sides 

of the model are straight after the deformation. If number of the fibres increases, shear 

properties converge to the shear properties evaluated for one periodic element without 

the straight – side requirement. 

The behaviour of homogeneous material models with parameters evaluated 

numerically differ insignificantly if no shear behaviour is considered and overestimate 

strength of the UD composite in the longitudinal and transverse directions. As the 

fictitious shear values were used for the material model with parameters evaluated 

analytically, this material model describes linear shear behaviour only and 

underestimates strength in the longitudinal and transverse directions. 

Micromechanical model with the ideal microstructure does not reflect micro-cracks, 

misaligned fibres and other defects. To consider these defects, the randomly distributed 

microstructure and higher order model should be analysed. 
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